Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence.

نویسندگان

  • M A Haidekker
  • N L'Heureux
  • J A Frangos
چکیده

Fluid shear stress (FSS) has been shown to be an ubiquitous stimulator of mammalian cell metabolism. Although many of the intracellular signal transduction pathways have been characterized, the primary mechanoreceptor for FSS remains unknown. One hypothesis is that the cytoplasmic membrane acts as the receptor for FSS, leading to increased membrane fluidity, which in turn leads to the activation of heterotrimetric G proteins (13). 9-(Dicyanovinyl)-julolidine (DCVJ) is a fluorescent probe that integrates into the cell membrane and changes its quantum yield with the viscosity of the environment. In a parallel-plate flow chamber, confluent layers of DCVJ-labeled human endothelial cells were exposed to different levels of FSS. With increased FSS, a reduced fluorescence intensity was observed, indicating an increase of membrane fluidity. Step changes of FSS caused an approximately linear drop of fluorescence within 5 s, showing fast and almost full recovery after shear cessation. A linear dose-response relationship between shear stress and membrane fluidity changes was observed. The average fluidity increase over the entire cell monolayer was 22% at 26 dyn/cm(2). This study provides evidence for a link between FSS and membrane fluidity, and suggests that the membrane is an important flow mechanosensor of the cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New fluorescent probes for the measurement of cell membrane viscosity.

BACKGROUND Molecular rotors are fluorescent molecules that exhibit viscosity-dependent fluorescence quantum yield, potentially allowing direct measurements of cell membrane viscosity in cultured cells. Commercially available rotors, however, stain not only the cell membrane, but also bind to tubulin and migrate into the cytoplasm. We synthesized molecules related to 9-(dicyanovinyl)-julolidine ...

متن کامل

G protein-coupled receptors sense fluid shear stress in endothelial cells.

Hemodynamic shear stress stimulates a number of intracellular events that both regulate vessel structure and influence development of vascular pathologies. The precise molecular mechanisms by which endothelial cells transduce this mechanical stimulus into intracellular biochemical response have not been established. Here, we show that mechanical perturbation of the plasma membrane leads to liga...

متن کامل

Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels.

Sufficiently rapid healing of vascular endothelium following injury is essential for preventing further pathological complications. Recent work suggests that fluid dynamic shear stress regulates endothelial cell (EC) wound closure. Changes in membrane fluidity and activation of flow-sensitive ion channels are among the most rapid endothelial responses to flow and are thought to play an importan...

متن کامل

RhoA and Membrane Fluidity Mediates the Spatially Polarized Src/FAK Activation in Response to Shear Stress

While Src plays crucial roles in shear stress-induced cellular processes, little is known on the spatiotemporal pattern of high shear stress (HSS)-induced Src activation. HSS (65 dyn/cm(2)) was applied on bovine aortic endothelial cells to visualize the dynamic Src activation at subcellular levels utilizing a membrane-targeted Src biosensor (Kras-Src) based on fluorescence resonance energy tran...

متن کامل

HIGHLIGHTED TOPIC Biomechanics and Mechanotransduction in Cells and Tissues Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels

Gojova, Andrea, and Abdul I. Barakat. Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels. J Appl Physiol 98: 2355–2362, 2005. First published February 10, 2005; doi:10.1152/japplphysiol.01136.2004.— Sufficiently rapid healing of vascular endothelium following injury is essential for preventing further pathological complications. Rece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 278 4  شماره 

صفحات  -

تاریخ انتشار 2000